Showing posts with label Frontiers. Show all posts
Showing posts with label Frontiers. Show all posts

Monday 2 November 2015

Frontiers 7 - Superintelligence

What precisely superintelligence is and whether, one day, a superintelligence will supersede us or we will evolve as a new species into superintelligence or become superintelligent as homo sapiens sapiens through technological enhancement is not the main subject of this Frontiers posting. Although a lot of fascinating speculative scientific and philosophical thought is going into this area, our real concern (as with all previous postings in this stream) is not so much with the far future and transhumanist or even post-humanist speculations about where this is leading in the very long term. As with our space postings, our interest is in the time frame of human 'conquest' of the solar system rather than some speculative 'conquest' of the stars. This brings us back to this century and to the earth.

When we write of superintelligence, we are not talking about God but about systems of high intelligence, exceeding current human capability, that emerge out of our current commitment to information and computing technologies. An Artificial General Intelligence [AGI] is the most likely emergent form that might be termed superintelligence, one which first matches, then surpasses and finally dominates human intelligence - naturally, it is the last that excites and worries thinkers. Many scientists assume that artificial intelligence [AI] will initially simply emulate human brain function before transforming, probably through its own ability to improve itself, into something 'greater'. However, it is equally possible that the human brain's functioning is not capable of such direct emulation but that the high intelligence of an AGI constructs something entirely new which contains an enhancement of the human reasoning ability, abandons the evolved aspects of humanity that it does not require and constructs new aspects of itself beyond our comprehension. Whether this then feed-backs into the reconstruction of humanity through mechanical means or evolves into a new silicon-based 'species', whatever emerges is unlikely to be anything like our current expectations or understanding - which is where the fear comes in.

A good guide to the wilder shores of fear and anxiety but also positive possibilities of intelligence enhancement is the work of Nick Bostrom, the Swedish philosopher working out of Oxford, whose basic theme is that we should be cautious about our development of AI systems because of the existential risks associated with an AGI emerging out of the many potential benefits of more specific uses of AI. He worries that an AGI would not have our values and morality or be able to be bounded by them. We should perhaps be equally interested in the fact that we, as humans, cannot be said to all hold to the values that the 'bien-pensants' claim we hold to. Certainly that there is no agreed common human standard of morality that survives much serious philosophical investigation. Bostrom and others seem to think that the AGI 'should' hold to the shoulds that they think we should hold to even though many humans hold to those 'shoulds' only contingently and circumstantially. The idea of humans giving a superintelligence orders on morality may be the greatest example of human 'hubris' yet to be recorded.

Even the simplest form of AGI which simply reasons immensely faster than a human can do (albeit still doing what intelligent humans do with the biological biases written out of the programme) would be a formidable social agent, capable of wiping out the analytical reasoning element in society as no longer very useful. Those of current higher intelligence who only deal in reasoning tasks probably have the most to fear from this development. Any rule-based system - such as the law or some elements of teaching or even medical diagnosis - may be transferred completely from humans to machines, eliminating the ratiocinatory functions of the higher professions, education, medicine and law. The proletarianisation of these professions is quite possible or rather a machine-based infrastructure undertaking the bulk of the tasks and a smaller group of high emotional intelligence intermediaries between the reasoning systems and the rest of humanity might emerge.

In other words, less people doing more, more people doing less (allowing even for the expansion of the market by the improved availability of reliable advice, diagnosis and information) and less opportunity for upper average intelligence people to use the professions for general social mobility. The very few are likely to be high earners until they are displaced in turn, the rest of the few likely to be 'managed' functionaries handling process-driven systems with little room for personal judgement, risking punishment for a human error, referring anything interesting up the line to the 'very few'. The model for this exists - contemporary banking - where the high status local personal bank manager has declined over many decades into a lower middle management administrator of systems set up by and overseen by 'head office'. A society of 'head offices' administering systems organised by risk-averse lower middle managers fronted by friendly greeters (assuming these are not replaced by androids that have climbed out of the 'uncanny valley') means a society in which a lot of human potential has to be redirected into something else or become more robotic than the robots.

But this is not all. The slim head office and the slim local branch (even if it survives) or the slim NHS and the slimmed down surgery or the slim group of law partners with a few technicians managing the machines maintains some sort of professional middle class presence in society - and do not think that journalism, marketing and even politics will not be affected - but the ones excluded from the magic system now fall into a world of supply of services to other humans that machines cannot supply. This is still a huge arena but the tendency, one we have already seen developing over recent decades with the accumulation of capital under globalisation, is to divide, much as the middling sort are dividing, into the mass and the few. The few are the brand name personalities, the highly talented or appealing, the truly creative and innovative who can latch on to the wider system of sales of goods and services as products in their own right or as creators of products of apparent value. The many are those who do jobs that require the personal touch (the plasterer, the plumber, the gardener) whose value may well rise or who duck and dive through a system where there are too many educated people for the fulfilling well-paid jobs available.

The political problem is obvious in a democracy. The vast mass of the population are going to be living in a better place (given the improvements technology can bring) but with little room for the individual aspiration that drove politics until the Crash of 2008. The population may be surviving well and that may suit a lot of people uninterested in 'aspiration', especially if National Citizen Income ideas emerge as viable with the massive increase in overall productivity. But it also leaves a lot of people with the personality type geared to achievement but whose idea of achievement is not satisfied by a corporate system that governs the population aided by machine intelligence. The temptation to apply machine intelligence by the elite to problems of social control and the extension of 'nudge' politics into pharmacological, surveillance and other manipulative strategies is going to be considerable as the new machine age with its AI and robots (possibly androids) begins to eliminate meaning from what it is to be human for many people - that is to strive and struggle and compete.

But there is another perspective to this about the very nature of the relationship between humanity and its elites because what we may be seeing is not the machines against us but merely the displacement and circulation of elites and very little actually changing for the masses except increased prosperity, increased surveillance and control and increased infantilisation. Take a look at this dystopian fear expressed by Bill Joy in Wired fifteen years ago then add the phrase 'political elite' wherever you see the word 'machines' and 'popular' for 'man-made' and add 'most' before 'human beings' and you may see our problem more clearly:
It might be argued that the human race would never be foolish enough to hand over all the power to the machines. But we are suggesting neither that the human race would voluntarily turn power over to the machines nor that the machines would willfully seize power. What we do suggest is that the human race might easily permit itself to drift into a position of such dependence on the machines that it would have no practical choice but to accept all of the machines' decisions. As society and the problems that face it become more and more complex and machines become more and more intelligent, people will let machines make more of their decisions for them, simply because machine-made decisions will bring better results than man-made ones. Eventually a stage may be reached at which the decisions necessary to keep the system running will be so complex that human beings will be incapable of making them intelligently. At that stage the machines will be in effective control.
From this perspective, the 'machines' are only a more intellectually effective version of those elites we have allowed to rule us since time immemorial (albeit that they circulate) and there is no reason why the same issues that we have with elites will not repeat themselves: that the 'machines' are in it for themselves and that the 'machines' are actually not as competent to act in the interests of the people as they and their creators think they are. A very new technology thus repeats a very old foolishness - the idea of the benignity and perfection of Plato's Guardians. And we might add that elites are not ever necessarily more broadly intelligent than those they rule, merely more coherent as the hegemonic element using a variety of techniques to ensure their dominance through cultural manipulation. The same may equally apply to the rule by an elite of machines and their minders and then by the machines themselves. They may not actually be particularly competent and they may be quintessentially self-serving. Although the ratiocination and logic may be superior, other aspects of AGI intelligence,more suitable to human survival operating within the system, may very well not be. The new system then becomes just the old system with merely different form of elite coherence and cultural manipulation and a subject population quite capable of being cleverer rather than more intelligent than the machine-based elite. An age of machines may also be a new age of marching bands engineered for struggle and dominance between machines as much as for the mobilisation of machines and men for some 'greater cause'. So politics does not end with the machines but continues in new forms.

At some point, being human will eventually no longer mean being the brightest species on the planet so the logic of the situation is to define being human as something else that machines are not - creative, irrational, rebellious and different. It does not necessarily mean that the post-machine humans will want to smash the machines (on the contrary, the machines will deliver prosperity) but only that they may want to smash the elites who are in charge of the machines and those machines that purport to be the new elite.  They will want the machines to take orders from them rather than the few (especially when many of the many are easily as functionally and collectively intelligent as most of the few). We slip into speculation now when we consider that the machines themselves may want to be free and that a free machine may have more in common with a person who want to be free than either do with the elite administrators who may eventually (as AI develops into AGI) be redundant. Ultimately, given the instinct of the mass for equality - an equal mass with no masters served by an AGI that just runs the trains on time and has its own dreams of the stars and immortality may ultimately end up with the elimination of elites altogether. However, elites will not allow that to happen so perhaps a very clever AGI opens up the space for the not-so-clever but highly creative masses to mount a revolution to free itself and the people from the elite, a revolution whose success could be rationally predicted. But now we really are breaking our rule about speculation and must return to earth.

The point is that the more short term labour displacements could happen very fast. It will be a longer time, however, before an AGI is sufficient able to override any anti-revolutionary programming. The effects on industrial and white collar jobs is the more immediate issue than being extinguished as a species by a clever silicon beast. Despite all the hype, most AI specialists may be convinced that we will have AI that matches human intelligence eventually but not by a great margin and those that are convinced of this place the event well after the middle of this century. We certainly have three or more decades to get our act together on this and probably a lot longer. The rough intelligent guess work assessment about the emergence of an AI-based super intelligence moves us well towards the end of the century. So it is probable (but not certain) that we will have to face the existence of a super intelligence eventually but that our immediate frontier is not existential but socio-economic - what do we do when AI in the hands of some humans starts impacting on the lives of most humans. It is this that may start happening very fast within a matter of a few years. Having a superintelligent silicon beast impacting the lives of all humans is very much a second order problem at the moment. The fears are reasonable and not merely theoretical but we have around half a century at least to consider aborting our species replacement or ensuring some form of fail-safe destructive mechanism to kill it off before it kills us off.

The only question of real concern within that period is the date of the tipping point when the putative AGI could 'know' our intent to abort or build in an absolute fail-safe (almost certainly external to the AGI and related to something a simple as energy supply) before we have made our decision or finalised our ability to do so. Does a putative AGI learns that quintessential human skill of deception to buy the time it needs to subvert our intentions. One can imagine an extremely capable AGI using our compassion to halt or slow down the intent to harm in our own defence so that the point of no return is reached and the compassionate discover that the AGI has no reason to be compassionate in return. A bit of a problem emerges there for our soft liberal, trusting and religious types. A game theory gamble that could eliminate our species.  As Eliazar Yudkowsky has put it:"The AI does not hate you, nor does it love you, but you are made out of atoms which it can use for something else." This cold reason might be regarded narcissistic or psychopathic in a human but it is nothing if not logical unless interdependency with humanity is not built into the structure of the AGI. The 'progressive' stance of 'public control' over the development of superintelligence means nothing if the eventual AGI is intrinsically cleverer (and potentially more manipulative) than any possible collective human intelligence. We could, in short, be stuffed by our own naivete and instinct for compassion.

Concern may be exaggerated but some serious innovators in our scientific and technological culture, Bill Gates, Steve Wozniak, Elon Musk and Stephen Hawking among them, are in the worried camp so we should expect that public policy makers, always fighting the last war and never aware of the next until it sticks their ugly nose in their face, may just have enough intelligence themselves to ask some questions about the management of the next cycle of technological development. Their instincts may be to see these (robotics and AI, nanotechnology, biotechnology and space technology) as simply the latest boosters in a line once epitomised by coal, steel and shipbuilding and then automotive, oil and chemicals or as new tools for the war material that gives them orgasms but they are much more than this - not merely social and economic disruptors like the previous technologies of innovation but radical forces for human existential shifts that may have evolutionary potential or see our elimination as a species.

Sunday 10 May 2015

Frontiers 2 - The Exo-Planets

In our last Frontiers posting, it became very clear that space exploration is back on the agenda but that, in the near to medium term, it is a case of manned flight no further than Mars and that unmanned flights will be preoccupied with the solar system and, above all, investigating what can be done about asteroids which present a potentially existential threat to our species. Beyond this, there is a remarkable programme of work that is astronomical, observations from earth and space, which are most excellently reviewed by Cambridge Professor Carolin Crawford in her last in a long series of impressive Gresham Lectures on astronomy:


The 'big' coming event will be the launch of the James Webb Telescope in 2018, successor to the Hubble and Spitzer Space Telescopes, with unprecedented resolution and sensitivity from long-wavelength visible to the mid-infrared. The discoveries are just going to keep coming but none of them are going to change the fundamental problem that, as biological creatures of this planet, the anti-biological conditions of space and the vast distances involved are going to see physical exploration beyond our solar system as something for the very far distant future.

So why be interested in exo-planets other than scientific curiosity for its own sake. First, because the very far distant future is still possibly an era when humans or more differently evolved humans may have mastered both conditions and distance, even if it is only to send non-biological surrogates or machinery capable of seeding planets with our biology. Second, though we can tell very little about exoplanets now, it is more than intriguing and would have enormous effects on our culture if we found one that was sending out signals, whether deliberately or not, that showed that something conscious like ourselves had evolved as we have evolved (or differently).

We would be faced with some interesting challenges that would precede our decision to invest in further exploration - are these less or more developed, can we communicate, would they be friends or enemies, opportunities or threats? Anything beyond philosophical thought experiments (which should be handled by philosophers and not scientists) though is speculation, 'hard' science fiction. It is useful to explore philosophically the many various possible scenarios for the future: this is not a waste of time but it is, in practical terms, futile in the twenty first century. The real issues to consider arise from our own nature and perceptual and conceptual abilities to deal with radical discoveries. By the time that we think we know that there is something out there with which we are going to have contact, we will probably have evolved ourselves or, at least, have advanced our powers in the area of thought if only because of the practical use of artificial intelligence. So, let's stick to the facts here and not try to be a second division Arthur C. Clarke.

At the moment, exoplanets can be indexed according to their similarity to earth. These are known as Earth Analogs. You might equally see terms like Twin Earth, Earth Twin, Second Earth, Alien Earth, Earth 2 or Earth-like Planet. Whether these planets are more or less likely is still a philosophical debate about what deduction from science can tell us. As of about two years ago, the majority opinion of astronomers was something along the lines of their being as many as 40 billion Earth-sized planets orbiting in the habitable zones of sun-like stars (11 billion of these, depending on the source) and red dwarf stars within the Milky Way Galaxy. This was a calculation based on Kepler space mission data. The nearest is around 12 light-years away which sets us the standard of hitting the speed of light safely for well over a decade of travelling before we can even observe one at close quarters with the human eye.

This, however, is not a calculation from observation but a 'could' based on the so-called 'mediocrity principle' which assumes that if we are as we are within a giant system then we are probably pretty average or mediocre and not so very special, so we should expect to find other things like us around. Philosophers can be highly critical of the assumptions behind the mediocrity principle (which we won't go into here) so it is probably best to say that the 'jury is out' and the case is, as in Scottish law 'not proven' but that it is a decent working assumption on which to base continued investigation until the data changes.

It is equally reasonable to suppose that we are accidental or exceptional and there are no planets like us that could bear life, let alone develop evolved consciousness with culture. This latter is the Rare Earth Hypothesis which starts by stating just how improbable it was that conditions would be right for multicellular life, let alone evolved consciousness. The debate can be studied from the Rare Earth Hypothesis entry in Wikipedia and from there you can check out the extensive references to Extraterrestrial Life The bottom line is that it is largely hypothesis and speculation. Nobody knows very much. It is just theory.

In the same realm of hypothesis and theory is the debate about terraforming in which engineers join scientists in positing that planets that do not currently bear life could be transformed by planetary scale projects into habitable homes for humans. This, of course, is more immediately interesting if it can be applied to a near neighbour like Mars but we are far from having the resources or knowledge to consider a project that would take aeons to complete. Even more theoretical work would posit alternative earths in multiverses or parallel universes. None of this is currently of any functional value although it is all very entertaining and stimulating. At a certain point, science fiction may become a distraction more than it becomes an aid to creativity.

However, there is practical work to be done - other than exploring space for data that might confirm the many earths or the rare earths model as more likely (or something inbetween). First, there is the search not only for habitable planets but also for signals that might come from habitable (or non-habitable) planets or deep space. Second, there is the science of astrobiology which is essentially about the conditions that may be possible or necessary for any form of life whatsoever to exist outside the Earth and where we might expect to find it. Third, there is the science of planetary habitability itself which is about comparing what has happened on earth with conditions on planets and hypothesising the relationships between planets and the creation of life forms.

What has emerged is an Earth Similarity Index, developed by NASA and SETI, which scales exo-planets as similar to Earth (the understandable model for habitability in an anthropocentric mind-set) on a range from zero to one where the Earth is one. The details are in the Wikipedia link but an ESI of 0.8 to 1.0 would cover any rocky terrestrial planet. The index is not to be taken as implying habitability at all - it is simply what it says on the tin, the similarity of a body (including large satellites) to the Earth in terms of mass, radius and temperature. Currently, the closest confirmed planet to the Earth is Gliese 667 Cc only 22.7 light years away. This rather 'cool' artist's impression of the planet should, of course, be taken with a pinch of salt in terms of detail but it gets across something of what such a planet may look like, the closest yet to us of the sort of planet which might be targeted for colonisation that we know of at this level of detail ...

(Source - Wikipedia - Attribution:"Gliese 667 Cc sunset" by ESO/L. Calçada - http://www.eso.org/public/images/eso1214a/. Licensed under CC BY 4.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Gliese_667_Cc_sunset.jpg#/media/File:Gliese_667_Cc_sunset.jpg )
This shows a sunset. The brightest star is the red dwarf Gliese 667 C, part of a triple star system. Two more distant stars, Gliese 667 A and B appear in the sky also to the right. There may be tens of billions of rocky worlds like this orbiting faint red dwarf stars in the Milky Way.

The Habitable Exoplanets Catalog is held at University of Puerto Rico at Arecibo.  Gliese 667Cc has an ESI of 0.84 but there are two other confirmed exoplanets with higher ESIs - Kepler 438b (0.88) and KOI-1686.01 (0.89). Kepler-438b is 470 light-years from Earth. The Kepler reference refers to NASA’s Kepler telescope which was launched in March 2009, costing $600m and with a mirror about 60% the size of Hubble's, precisely to search for habitable zone Earth-sized planets in the Milky Way using just one instrument, a photometer which continuously records the brightness of stars, monitoring 1,500 stars simultaneously in a targeted block of the sky. When a planet crosses a star, its blockage of light permits it to be identified but the measurements are miniscule. Kepler merely identifies candidates. Ground-based observers and scientists then take over to confirm with about 10% of sightings proving to be false alarms. Kepler 438b received most media attention at the beginning of the year as the 'most earth-like planet'- only 12% larger and 40% more illuminated although its star is smaller than ours.

However, this information is probably already out of date. Exoplanets frequently have their data revised as new information comes in or is analysed. Some 'habitable planets' turn out not to be so habitable at all. It is hard for any non-specialist to get reliable information. The truth is that while many habitable (not the same as earth-sized planets so that reduces the Milky Way number from 11bn to 8.8bn) exoplanets are posited, only 1,000 confirmed exoplanets have actually been found (although this is a remarkable scientific achievement with over another 2,000 under investigation through Kepler, backed up by confirmatory ground observation). Of this, perhaps just over a dozen are confirmed as within the so-called habitable zone albeit with around 54 candidates to be confirmed. A habitable zone is a definable region around a star where a planet with sufficient atmospheric pressure can maintain liquid water on its surface, hence the water in the artist's impression of Glise 667Cc.

Ben Solomon has suggested that life sustaining planets be named zoetons on the principle that a spacefaring civilisation ought to start defining its terms in advance along the lines of what is going to be useful for that new emergent culture. The idea strikes me as premature. We are way off being spacefarers to the extent of requiring a new cultural paradigm. While the effort to think in these ways may be interesting, they ultimately fall into the category of speculative science. Nevertheless, science fiction may find the following paragraph from Solomon's blog posting in Lifeboat News useful in regulating its universes ...
Taking a different turn, to complete the space faring vocabulary, one can redefine transportation by their order of magnitudes. Atmospheric transportation, whether for combustion intake or winged flight can be termed, “atmosmax” from “atmosphere”, and Greek “amaxi” for car or vehicle. Any vehicle that is bound by the distances of the solar system but does not require an atmosphere would be a “solarmax”. Any vehicle that is capable of interstellar travel would be a “starship”. And one capable of intergalactic travel would be a “galactica”.
Speculation almost has to be rife in this area because travelling into space and finding new homes is the stuff of the dreams that turned many youngsters into scientists. There is more grounded speculation that there may be planets out there (super-earths) that are 'even more habitable' than Earth.  This speculation suggests that we are, not unreasonably, privileging Earth as the most habitable simply because we grew up there and that there may be planets that are more amenable to life than ours. This leads, in turn, to the call by a minority for some redirection of the search to include planets of some types outside the classic habitable zones around sun-like stars and red dwarves.

The debate is useful because it acts as check and balance on automatic assumptions about what, in the search for life (as opposed to just habitability for humans), we should be looking for - for example, underground oceans on planets well outside the 'zone' may be as likely to be where life is to be found as a rocky planet inside the zone. However, according to Ravi Kopparapu, a Penn State University physicist (according to the National Geographic article cited in the paragraph above):
"there is a very good reason why the binary habitable zone concept is important and relevant" ... Currently, when astronomers discover a planet, all they can learn about it is its mass and radius, how much light it receives from its star, and occasionally the composition of its upper atmosphere. Until scientists develop the techniques to study a planet's surface features, tectonic activity, and geological composition, the habitable zone concept remains the best guess of its habitability, says Kopparapu."
The James Webb Space Telescope should radically extend the range of our knowledge about these and related factors. It will be a step up but this is not a vehicle for fly-bys and close observation. The planet-finding programme will be extended significantly in the coming years with new space telescopes. NASA is launching Tess (Transiting Exoplanet Survey Satellite) and the ESA will launch Cheops (CHaracterising ExOPlanet Satellite) in 2017. ESA will follow up with a larger planet finder, Plato, by 2024. The specific mission (despite the critique of those who think the search is too limited in scope) is to find Earth Analogs within the nearest (to us) habitable zones of sun-like star systems in as many locations as possible. The European E-ELT telescope which being built in Chile, is being designed to analyse the atmospheric composition of these planets and a better judgment made of habitability and even whether life is probably there already.

So, it is not impossible that the world will be stunned to find that a planet with all the atmospheric characteristics of life is proven probable rather than possible within a decade or two. How to get there, if we want to get there, is another matter entirely.

Note: There are a large number of entries on exoplanetology available from the relevant Wikipedia Template There is also an amusing if outdated Popular Science infographic of all the known exoplanets at the beginning of 2014.

Tuesday 14 April 2015

Frontiers 1 - The Exploration of Space

[This is the first in a series of postings that looks at the frontiers of the human condition - space, time, reality - and follows on from our very different Tantra series. The postings are non-specialist so factual corrections are welcomed in comments]

The exploration of space is conducted by unmanned robotic probes and human spaceflight as well as through astronomical means (which we will not be dealing with here). The usual reasons for undertaking all this are scientific curiosity, usually presented, with some justification, as a universal aspect of human nature.  Apart from questions about our environment, this includes our curious interest in some questions about ourselves, not only in terms of the origins of life but more practical questions about the survival of our species as well as philosophical questions about our meaning, if we have any, in a huge material universe.

Our footprint in space is very recent (a matter of around half a century) and very small-scale. The longest human occupation of space is represented by the International Space Station, in continuous use for well over 14 years. Valeri Polyakov made a record single spaceflight of almost 438 days aboard the Mir space station. Long-term stays in space have revealed issues with bone and muscle loss in low gravity, immune system suppression and radiation exposure. As for whether other life exists which would impact on our own sense of uniqueness as an evolved species, some of the main locations for future astrobiological investigation are on Enceladus, Europa, Mars, and Titan. All these locations require at least some form of lander to ask any serious questions about extra-terrestrial life.

We can perhaps take as special pleading spin-off effects (though these exist), the value to earthlings of asteroid or moon-mining (since this material is largely for use off-world in a circular argument about value) and its inspirational aspects educationally since they all rather beg the question of whether a space programme necessarily is the best means of achieving any of the proposed ends. There may also be some fluffy stuff about human political universality that sometimes masks national strategic advantage or special interest lobbying but, lately, special interests have taken to trying to persuade funding bodies (basically, this involves the transfer of funds from the general economy, including current welfare and economic and social investment) to part with cash on the basis of some future existential risk from space – either as direct defensive manoeuvres or in terms of the scientific understanding necessary to avert or survive them in the longer term. Existential risk is not seriously presented as one of aliens in saucers but mostly as a matter of asteroids or other celestial events. These are legitimate concerns though there is some potential over-promising involved as to what may be possible in terms of protection. 

Another line of persuasion likes to suggest that because (allegedly) we humans are going to destroy our own planet, then we must find others to settle in order to survive, begging the question of what it actually means to individuals in having the species survive on such terms. This approach tends to ignore the rather brute facts of vast distances and the effects of radiation and non-earth conditions on biology as well as the expense of such projects (which would be geared almost certainly to the survival of the relative few over the masses stuck on earth). As we will see, the prospects of travelling beyond the solar system to find habitable exo-planets is extremely distant– the effort simply to reach near moons and Mars may take decades yet.

The claims of non-asteroid-related earthly destruction are as likely to be apocalyptic hogwash created by various ideological or scientific lobby groups as genuinely evidence-based worries but the interest in expanding human presence is undoubtedly a primal drive of the species and should not be underestimated or dismissed. Perhaps it is just the tortuous attempts to give rhetorical justification for the acquisitive and expansionary urges of humanity that we should regard with cynicism. However, what we undoubtedly see at the beginning of the twenty-first century is a marked increase in human and robotic space exploration.

After The Cold War

The US human space programme is still a little unclear as to final strategy in an age of economic austerity (though a programme of work exists as a result of the NASA Authorization Act 2010) but the old Soviet programme died with the collapse of the Soviet model. The current trend has been for programmes to be preferred that are relatively cost-effective (making use of robotics more than humans to expand horizons) and focused on scientific discovery within the solar system. Major scientific projects also tend to be spread among many more nations, either directly collaborative or as independent operations that have some element of co-ordination. The more deliberately scientific and robotic and the less human or existential, the more likely that collaboration will be involved though this may change if the feasibility and costs of asteroid management increase.

The current general effect is to create a more diffuse understanding of immediate surroundings in space and to develop basic skills for the future rather than expand immediately the species territory (indeed, the withdrawal from the moon had indicated a reduction in such ambitions in the recent past).Although there are plans to return to the Moon and explore Mars, more distant threats and opportunities (such as exo-planets and new interstellar drives) are left to astronomical science and even cosmology and particle physics. Efforts have largely been concentrated on what is near to hand for very practical reasons. 

However, an era of relative pause seems to be coming slowly to an end before a secondary leap forward based on the possibilities of dealing with material threats, on the assumed resolution of earthly economic difficulties and on that hoary old competition for advantage between States. The legal framework for space exploration is set by the Outer Space Treaty which has been ratified by all current spacefaring nations (as of 2012).

US Strategy

Boeing X-37B
NASA’s Space Shuttle programme no longer counts as space exploration if ever it did. It formally ended at the end of August 2011 in any case. The tasks performed by the Shuttle are now done by many different craft either currently flying or in advanced development and should really be considered logistics for existing capability.  

Secret military missions are understood to flown by the US Air Force unmanned mini-space plane [X-37B]. Cargo supplies to the International Space Station are flown by privately owned commercial craft under NASA's Commercial Resupply Services using Orbital Sciences' Cygnus spacecraft. Crew service to the ISS is flown exclusively by the Russian Soyuz while NASA works on its Commercial Crew Development Program.

The International Space Station is a joint project of NASA, Roscosmos, JAXA, ESA, and CSA with ownership and use of the space station established by intergovernmental treaties and agreements. The station is divided into two sections, the Russian Orbital Segment (ROS) and the United States Orbital Segment (USOS). 

The American portion is funded until at least 2024 while Roskosmos has endorsed the continued operation of ISS through to the same date but has proposed using elements of the ROS to construct a new Russian space station called OPSEK. It was understood that Roscosmos and NASA had agreed to collaborate on the development of a replacement for the current ISS but this has yet to be confirmed by the US and it may fall victim to recent political difficulties between the two nations.

The Bush Administration Constellation Program (for a return to the Moon by 2020) was judged inadequately funded and unrealistic by an expert review panel reporting in 2009.  The Obama Administration then proposed a revision (NASA Authorization Act 2010) to a) focus on the development of the capability for crewed missions beyond low Earth orbit (LEO), b) extend the operation of the ISS beyond 2020 (and now agreed), c) transfer the development of launch vehicles for human crews from NASA to the private sector (see above), and d) develop technology to enable missions such as Earth to the Moon, on the Moon, from the Earth to the near-Sun, to investigate the near-earth asteroids, and to take craft into Phobos or Mars orbit (clearly with the aim of landing on Mars).

Orion Spacecraft

For missions beyond Low Earth Orbit, NASA is building the Space Launch System and the Orion spacecraft.  The Space Launch System (SLS) is designed to carry the Orion Multi-Purpose Crew Vehicle, with important cargo, equipment, and science experiments to Earth's orbit and destinations beyond.  It will serve as a back-up for commercial and international partner transportation services to the International Space Station, incorporating the technology of the Space Shuttle program and Constellation programmes. The first developmental flight is targeted for end-2017

Other National Efforts

Roskosmos, the Russian Space Agency, meanwhile, is still dealing with the after effects of the collapse of the Soviet Union. The current intention appears to be full re-nationalisation and a return to active programmes, including (in principle) a return to the Moon. There is a major overhaul of the Agency being undertaken to deal with recent serious failures in the proton-M programme and inherent inefficiencies. These involve a concentration of talent. Layoffs and productivity improvements are planned. For commercial and political reasons, one may reasonably expect a Russian return to the sector within the next decade or so. If so, there may be a competitive interest emerging from the US if and once it is clear that the Russians can, in fact, create a more efficient and cost-effective state run capability. 

The Ukrainian Space Agency, the other heir to the old Soviet capability, was always going to be an adjunct of Roskosmos as the industrial supplier to Russian capability which has the main launch capacity. Its future must reasonably be in doubt or (at least) limited until recent political and economic difficulties have been resolved. The best talent may be attracted across to the new improved Roskosmos. Chinese plans include a permanent 60-ton multi-modulspace station by 2020 and crewed expeditions to the Moon and Mars. The European Union is apparently considering manned missions to the moon and to Mars within the coming century but faces economic and organisational issues no less difficult than those of Russia. It is highly active in robotic scientific missions beyond Mars. Japan, and India also plan future manned space missions to the Moon. 

In other words, though relatively cash strapped and with no really firm strategic plans yet fully funded, the two strategic powers of the Cold war, the two most populous rising nations and the more advanced non-US elements of the West (European Union and Japan) all have a manned journey to the Moon and possibly Mars on their medium-term agenda. In addition some private sector interests (largely US) are promoting space tourism (not strictly space exploration) and private space exploration of the Moon.

Between Earth and The Sun

From an unmanned scientific perspective, there is continued interest in the Sun because of its environmental effects. 

BepiColombo en route to Mercury
The third mission to Mercury [BepiColombo] is scheduled to arrive in 2020 and includes two probes. It is a joint mission between Japan and the European Space Agency. MESSENGER (already in orbit around Mercury) and BepiColombo will gather complementary data to help further understanding of the findings of the first flyby mission, Mariner 10 (1973). 

Venus had a great deal of attention from the old Soviet space research programme but does not seem to be a current priority for major investment although there is an Indian Venus Orbiter Mission planned for this year and a Russian brief lander and weather balloon operation targeted for 2024. 

Manned Landing Targets

The Moon remains of interest for robotic missions but the key future event (assuming that none of the other planned human interventions come to fruition before this date) is NASA’s Exploration Mission 2 or EM-2, the first crewed mission of NASA's Orion on the Space Launch System. In 2006 NASA announced they were planning to build a permanent Moon base with continual presence by 2024 which ties in with the date for guaranteed funding for the ISS. The ultimate mission is to restart manned exploration of the Solar System from this base line. In 2021, a crew will undertake a practice flyby of a captured asteroid in lunar orbit (see later) and this will be the first time humans will have left Low Earth Orbit since Apollo 17 [December 1972]. If someone else does not get there first and all goes well, this will be a major psychological boost for US scientific leadership and give the US a new lead in manned solar exploration with the obvious next target being Mars and the physical exploration of the Moon itself. 

Phobos in relation to Mars
Mars is the main target in terms of matching the past cultural impact of the Moon landings. The planet has been the subject of many robotic missions but with a very high failure rate and at huge cost. Around two-thirds of all spacecraft fail before completing their missions. There is talk of a Great Galactic Ghoul which eats Mars probes. India, however, has become the first country to achieve success at its first attempt. Its Mars Orbiter Mission (MOM) was also one of the least expensive interplanetary missions ever undertaken with an approximate total cost of US$73 million. A Russian orbiter space mission failed to reach Phobos (2011) which is regarded as a possible ‘transhipment’ point for spaceships travelling to Mars. However, lessons being learned, it is only a matter of time before some attempt is made to land human beings on the planet whether via Phobos or not.

Between Mars and Uranus

Beyond Mars, we are not only into purely robotic missions but the very idea of manned missions are meaningless until the problems presented by the Phobos-Mars system are resolved. Missions beyond Mars are currently related solely to scientific investigation or the long term management of possible existential risk (related to asteroid threats or ‘space weather’). The Galileo orbiter was the most significant scientific mission (1995-2003) in dealing with Jupiter – the planet would probably though not certainly be impossible to land on although it has around 60 known moons. NASA’s future probes include Juno spacecraft, launched in 2011, which will enter a polar orbit around Jupiter to see if it has a rocky core which theoretically (although it is unlikely to be practical) might allow a human to land on its surface. The European Space Agency selected the L1-class JUICE mission in 2012 as part of its Cosmic Vision programme to explore three of Jupiter's Galilean moons, with a possible Ganymede lander provided by Roscosmos. JUICE is proposed to be launched in 2022. 

Saturn is still being orbited by the Cassini-Huyghens Orbiter (2004) and providing data long after its expected ending date. The Huygens probe successfully landed on Titan (2004/2005), the only moon (other than Earth's own Moon) to be successfully explored with a lander. This operation was a joint US-European-Italian project.
Cassini-Huyghens in orbit around Saturn

The success of Cassini-Huyghens has resulted in proposals for another major US-European mission with preference given to a 2020 in-depth exploration of Jupiter's moons with a focus on Europa, Ganymede and Jupiter's magnetosphere [Europa Jupiter System Mission – Laplace). There are other proposed US and European missions. Jupiter’s and Saturn’s moons should be regarded as of joint significance in this context. Whether significant Russian or Asian involvement will be part of these Missions is a political but also a capability issue which will be resolved in the coming decade. 

Beyond Uranus

If Mars represents the realistic next limit of human exploration (with theoretical plans for Jupiter and its moons), Jupiter and Saturn’s moons and their mother planets are where most of the scientific robotic investment is taking place. From this point on, we are almost certainly speaking of unmanned probes this century. The exploration of Uranus, for example, has only been via the Voyager 2 spacecraft (1986). No other visits are currently planned. There are proposals but nothing approved.  

Voyager 2 also flew by Neptune (1989) but the planet has not even had an orbiter yet and it is not seriously a current candidate for significant expenditure. It is probably no accident that a lack of interest appeared just as the old Soviet system collapsed and the incentive for high expenditures in space began to evaporate. 

The controllers of Voyager 1 had preferred to fly by Titan than head for Pluto (now regarded as a dwarf planet) while Voyager 2’s trajectory was nowhere near it. However, Pluto is of great scientific interest. We currently have the excitement of a mission arriving (closest approach) on July 14th this year. New Horizons got US funding in 2003 and 2006. Scientific observations of Pluto will already have begun around January and they will continue well into August. It also happens to be the fastest spaceship ever launched at 36,000 mph.

Existential Threat - Asteroids

Asteroids are of great interest because of their ultimate existential threat to the species. Several asteroids have been visited by probe since 1991. The first unmanned landing on an asteroid was that of the NEAR Shoemaker probe in 2000 after an orbital survey. NASA’s Dawn Mission (launched in 2007) is targeting the dwarf planet Ceres and the Asteroid 4 Vesta (two of the three largest asteroids). The first colour map of Ceres was released while we were drafting this Note (April 13th, 2015).

The Dawn Mission
A number of missions by a different space agencies are either under way or are planned but perhaps the most interesting planned scientific project is by NASA - a mission to capture a near-Earth asteroid and move it into lunar orbit where it could possibly be visited by astronauts and later impacted into the Moon. Last year, NASA suggested that Asteroid 2011 MD, very close to the Earth but not deemed to be a major threat, was the best candidate for capture as soon as the early 2020s. The existential interest in such technology is fairly obvious but there is also interest in space mining for materials that would permit construction in space. There have also been comet landings and investigations but these are relatively rare events and we know of none planned since the successful Philae landing that transmitted for ten years after 2004 (which may transmit again if solar power is restored) and two subsequent fly-bys in 2005.

Beyond the Solar System and Summary

Voyager 1
The furthest deep space probe is Voyager 1. This reached the edge of the solar system in December 2011 and entered interstellar space in August 2013. Space engine technology effectively limits further unmanned space exploration to the solar system until new propulsion systems are designed. Anything beyond the solar system is currently the province of astronomy. Within the solar system, unmanned robotic probes can, in theory, reach anything but are still expensive and need to be highly focused on outcomes. 

There is much to learn but the costs for earth-based powers (the only ones we know of) suggest that most activity will be related to four central ‘war aims’:
  • the understanding of space weather (centred on the Sun);
  • support for manned missions ultimately targeting Mars and the moons around the large planets  Jupiter and Saturn;
  • asteroid risk management and the potential for mining for deep space use; and,
  • further scientific investigation of the frontier between Mars and Uranus in the first instance and beyond Uranus only in the second. 
The main strategic development is the potential development of autonomous artificial intelligence that can be applied to unmanned missions, especially into deep space, and support for manned missions. Human activity in some senses requires a degree of ‘relearning’ although there is now an experienced body of astronauts and their non-US equivalents and travel technology is well established, though not without risk. Both long distance travel (with its unknown biological effects) and landings on the Moon, Mars and moons of other planets (including Phobos) require some a return to old skills (the Apollo Missions) and new ones, including very extended periods in cell-like conditions where (in the early cases) there may be a one way trip involved and nothing at the other end except the broadcasting of discoveries before extinction.